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The  geome t ry  of the closing compres s ion  shock and the boundary of a submerged  underex-  
panded gas  jet a r e  invest igated.  The s e l f - s i m i l a r i t y  of the initial  sect ion of the jet  at high 
p r e s s u r e s  and the d is turbance  of the s e l f - s i m i l a r i t y  as the s t r e a m  densi ty  d iminishes  a r e  
shown exper imenta l ly .  

A study of the s t ruc tu re  of an underexpanded jet  is of essent ia l  value for the fur ther  development  of 
the theory  of r ea l  gas flow and the product ion of intense molecular  b e a m s .  

At p re sen t  there  is compara t ive ly  l i t t le  information about the cha r ac t e r i s t i c s  of the closing shock, 
p a r t i c u l a r l y  at low p r e s s u r e s  when the influence of v i scos i ty  is substant ia l ,  as  well  as at high Mach num-  
b e r s  at the nozzle  sect ion [1-5]. 

Resul ts  of an expe r imen ta l  invest igat ion of the closing shock geomet ry  in the initial sect ion of an 
underexpanded supersonic  jet by the glow discharge  method a re  p resen ted  below for  different Mach num-  
b e r s  at the nozzle sect ion 1.15 ~ M a -< 4.2, ra t ios  of the p r e s s u r e  at the nozzle  sect ion to the p r e s s u r e  in 
the vacuum chamber  1.7 -101 -< n -< 8.103, and Knudsen numbers  10 -4 ~ K .  - 10 -s (the Knudsen number  K .  
was computed by means  of the s t r e a m  p a r a m e t e r s  in a c r i t ica l  sect ion of the nozzle) .  The method of in- 
ves t iga t ion  and the low-densi ty  wind-tunnel cha r ac t e r i s t i c s  a r e  descr ibed  in [6-8]. The geomet r i c  nozzle 
d imensions  and the e scape  modes of a gas  jet with d ive r se  adiabat ic  indices " /=  1.407 and ~ = 1.667 a re  
given in Table  1, where  the upper  s e r i e s  in the d column cor responds  to the nozzle d i ame te r  at the c r i t i ca l  
sect ion while the lower  is the d i ame te r  of the nozzle sect ion;  S /S .  is the nozzle expansion computed without 
taking account of the boundary layer ;  M a is the Mach number  at the nozzle sect ion obtained by means Of the 
r e su l t s  of to ta l  head p r e s s u r e  m e a s u r e m e n t s  p~; P0 is the p r e s s u r e  in the adiabat ical ly  f rozen  s t r e a m  in 
N/m2; and ~0 is the n o z z l e h a l f - a n g l e .  The gas  was f i r s t  heated by an e lec t r i c  hea te r  to a t e m p e r a t u r e  of 
T 0 = 523-700~ to prevent  condensation during escape  through the supersonic  nozzle  under conditions of the 
exper imen t .  Flow visual izat ion in a glow discharge  pe rmi t t ed  photographing the closing compres s ion  shock 
being fo rmed  in the initial  sect ion of a s t rongly  underexpanded jet .  Resul ts  of a visual izat ion of the closing 
c o m p r e s s i o n  shock in a i r  je t s  issuing f r o m  nozzles  with different expansion into a space  with reduced p r e s -  
sure  at high s t r e a m  densi t ies  (C ~ 10 -8, where  C = K.,/-n is the r a re fac t ion  p a r a m e t e r  [4]) a r e  p re sen ted  
in Fig. la as an illustration. 

On the basis of dimensional analysis and the equations of ideal gas motion it has been shown in [9] that 
the fundamental geometric dimensions of the initial section of an underexpanded supersonic jet issuing into 
a space with reduced pressure are self-similar relative to ~fn and can be determined from dependences of 

the form 

~L n-I/~=F(Ma, Mo, 74, 70, ~o), (1) 
d~ 

where  d a is the d i ame te r  of the nozzle  section; M c is  the Mach number  Of the sa te l l i te  flow; and Yc is the 
adiabat ic  index of the sa te l l i te  flow. This  a s s u m e s  conserva t ion  of the ra t ios  D0/x0, D/x0 (x0 is the posit ion 
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Fig.  1. Geomet ry  of the closing shock in underexpanded supe r -  
sonic jets:  a) photographs of jets  visual ized in a glow discharge  
for  K . ~ n  ,~ 10 -s, combinations of the Mach number  and p r e s -  
sure  ra t ios  [1) 1.15, 945; 2) 2.27, 150; 3) 3.0, 38; 4) 3.3, 41; 5) 
3.8, 22A]; b) resu l t s  of investigations of the se l f - s imi l a r i ty  of 
the closing shock and the jet boundary for  M a = 3.3 [upper par t  
of Fig.  lb:  1) K ,  ~-h = 9.4.10-4;  2) 1.96-10-3; 3) 2 .3-10-s ;  4) 

9 . 4 . 1 0  -4] and for M a = 2.8 [ lower par t  of F ig . l b ;  dark  points 
cor respond  to the jet  boundar ies ,  light points to the banging 
shock for  the following values of the number K .  ~/n: 1) K .  ~fh 
= 1.13.10-~; 2) 1.48.10-3; 3) 1 .69.10-s;  4) 2 .02 .10 - s ] .  

of the closing shock on the jet  axis; D o is the d iameter  of the Mach disk; and D is the maximum d iamete r  of 
the hanging shock), as has been shown ea r l i e r  exper imenta l ly  [8, 10]. Conservat ion of the ra t ios  D0/x0, 
D/x0 as well  as the descr ip t ion of the closing shock geomet ry  by analyt ical  dependences of the fo rm (1) in- 
dicates  the s imi la r i ty  of the geomet ry  of the jet  boundaries and of the closing shock when the quantity dan-t/2 
is used as the cha rac te r i s t i c  sca le .  The resu l t s  of an exper imenta l  investigation of the s imi la r i ty  of under -  
expanded jets with M a = 2.8 and M a = 3.3 a re  p resen ted  in Fig.  lb .  The point spread  for  the different  p r e s -  
sure  ra t ios  does not exceed the e r r o r s  of the exper iment .  The re  is a complete ly  sa t i s fac tory  s imi la r i ty  
between the hanging shock and the jet boundaries even near the nozzle sect ion x / r  a ~ 10. The kinds of jets  
p resen ted  above for  different  values of M a (Fig. 1) differ  by the na ture  of the ref lec t ion  of the hanging shock 
f rom the jet  axis: for  M a = 3.0 i r r egu la r  ref lec t ion with the format ion  of a Mach configuration occurs  under 
the conditions of the exper iment  while for  M a = 3.3 there  is regu la r  ref lec t ion  with the format ion  of an x -  
shock.  The angle of incidence co and the shock intensity ~ = Pt/P~ de te rmine  the p roces s  of plane shock r e -  
f lect ion [11, 12]. The angle w is a function of the Mach number  at the nozzle  sect ion in supersonic  je ts .  
Exper imenta l  values of the angle of incidence of the hanging shock on the jet  axis a r e  given in Fig.  2a for  
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TABLE 1. Geome t r i c  Nozzle  Dimensions  and 
Jet  Escape  Conditions (T o = 523.700~ 

~ i " 1 v=l,~v=l,667 Po" 10 "5, n/m s n h, d'lO*,~ 's/~, i~o | ~, . .  i 

1 
1 ,Ol 
1,5 
1,95 
1,85 
3 
1,85 
3,35 
1,85 
3,83 
1,5 
3,4 
1,5 
4,4 
1,5 
4,91 
1,5 
6,09 
1,8 
3,83 
/,8 
3,35 

1,02 

1,68 

2,63 ' 

3,77 

4,23~ 

5,12 

6,79 

10,7~ 

16,5 

4,23~ 

3,77 

3,3 

3,8 

4,2 

2,8 

2,5 

I 
2,5 

2,81 

3,23 

�9 3,99--9,31 

7,05--8,65 

0,655--9,31 

1,995--9,31 

3,99--9,31 

599--7,98 

3,99--9,31 

6165--7,98 

6,65=-8,38 

3,99--6,65 

3.99--6,65 

0~--8 .10 a 

78--920 

17--785 

37--10 a 

20--500 

30~50 

24--227 

22--180 1 

20-- 123 

36--313 

90-7418 . [ 

55' 

I0 ~ 

6 ~ 12' 

7 ~ 57' 

I0 ~ 05' 

I0 o 

10 ~ 20' 

I0 o 

16 ~ 37' 

15 ~ 30' 

15 ~ 30' 

n > 20 for  different  M a and C ~ 10 -s .  When there  is 
no d i rec t  in tersec t ion  of the hanging shock with the 
jet  axis  (Mach ref lect ion) ,  the approximat ion  of the 
hanging shock by the a rc  of a c i r c l e  is used  to d e t e r -  
mine the angle co, which because  of the s e l f - s i m i l a r i t y  
of the shock shape int roduces  no essen t ia l  e r r o r s  (see 
Fig .  lb) .  A c h a r a c t e r i s t i c  pecu l ia r i ty  of the p r o c e s s  
of shock ref lec t ion  in supersonic  underexpanded je ts  
is the high intensi ty  ~ < 0.07 for  n > 20. Resul t s  of 
invest igat ions of the dependence w = f(Ma) for  C ~ 10 -s, 
n > 20 for  fixed values of y = 1.4, ~0 show that t h e t r a n -  
s i t ion f r o m  Mach to r egu la r  ref lec t ion  is p e r f o r m e d  
fo r  ce r t a in  l imi t  values of the angle of incidence w l 
which a r e  s i m i l a r  in value to the l imit  angle of inc i -  
dence of a plane high intensi ty  shock w l = a re  sin 1/3/. 
T h e r e f o r e ,  for  a given C the re  ex is t s  a definite Mach 
number  M a / a b o v e  which r egu la r  ref lec t ion  occur s .  
Under these  conditions, the behavior  of the dependence 

= f{Ma) p e r m i t s  the ex t rac t ion  of th ree  ref lec t ion  
modes  for  a hanging shock in supersonic  je ts ;  t h e  
f i r s t  mode for  1 _< M a -< 2 is cha rac t e r i zed  by high 

angles of incidence on the je t  axis  and i r r e g u l a r  c o m p r e s s i o n  shock ref lect ion,  the second mode is for  2 -< Ma 
< Mal when the angles of incidence a r e  close to the l imi t  value w l but ref lec t ion  occurs  with the fo rmat ion  
of a Mach disk,  and finn]ly, the third mode is  c h a r a c t e r i z e d  by the angles  of incidence w < C~ and the f o r -  
mation of an x - s hock .  

If the angle of shock re f lec t ion  co' is cons idered  as a function of the angle of incidence co (i.e., as  a 
function of Ma), then the t rans i t ion  f r o m  regu la r  to i r r e g u l a r  re f lec t ion  occurs  in a na r row range  of M a 
var ia t ion ,  where  the values  of the angles and the nature  of the t rans i t ion  ag ree  with the plane case  for  in-  
t ense  shocks within the a c c u r a c y  of the exper iment  (Fig. 2b). The solid l ines in Fig .  2b a r e  the r e su l t s  of 
a theore t ica l  computat ion co' = f(w) by means of the theory  of r egu la r  plane shock ref lec t ion  [11], the dash -  
dot l ines y ie ld  the domain of unrea l izable  solutions of r egu la r  ref lec t ion  theory ,  while the dashed l ines (~ 
= 0.8; ~ = 0.2) a r e  the r e su l t s  of computing the Mach ref lec t ion in the plane shock case  by means  of t h r e e -  
impact  theory .  The r e s u l t s  of the computat ion by means  of the t h r e e - i m p a c t  theory  a r e  in good ag reemen t  
with exper iment  [13] in the case  of intense shocks (~ = 0.2), where  the cha rac t e r i s t i c  s ingular i ty  is the jump 
in the function w'  = f(~) n e a r  the l imit ing angle of incidence.  This  s ingular i ty  is conse rved  even in the axi-  
s y m m e t r i c  flow ca se .  

The fundamental  hypothesis  of the t h r e e - i m p a c t  theory  of approx imate  computat ion of the Mach con-  
f igurat ion is the poss ib i l i ty  of descr ib ing the motion t r a j e c t o r y  of the t r ip le  point in  plane shock ref lec t ion  
by the equation of a line y = kx + b '  and the s e l f - s i m i l a r i t y  of the flow. 

An analogous p ic ture  is  obse rved  in the Mach re f lec t ion  case  in a x i s y m m e t r i c  tmderexpanded j e t s .  
As the p r e s s u r e  ra t io  n i n c r e a s e s ,  the t r ip le  point moves  along a ray  s ta r t ing  f r o m  the center  of the source .  
The slope of the r a y  re la t ive  to the jet  axis is de te rmined  by the Mach number  at the nozzle  sect ion fo r f i xed  
values of Me, ~0- The re la t ionship  of the nngles in the t r ip le  configurat ion domain is independent of n within 
the e r r o r  of the exper iment  and the motion of the t r ip le  point occurs  s e l f - s i m i l a r l y .  The tangents of the 
s lopes  for  s o m e  M a a r e  p re sen ted  in Table  2 for  30 -< n -< 5 �9 10 z and different  values  of C. 

T h r e e - i m p a c t  wave theory  in combination with the method of cha r ac t e r i s t i c s  was used in [14] to c o m -  
pute the posi t ion of the cen t ra l  compres s ion  shock and the flow in the Mach configuration domain,  which a f -  
forded sa t i s f ac to ry  ag reemen t  between the theore t ica l  and exper imenta l  r e su l t s  for  the smal l  values  n ~ 10- 
2 0. As n i n c r e a s e s  the accu racy  of the computation in this domain is degraded cons iderably  in connection 
with the drop in accuracy  of the method of cha r ac t e r i s t i c s  for  l a rge  x / r  a .  The posi t ion of the compres s ion  
shockon the je t  axis  in the case  of nonregular  ref lec t ion for  M a < M a / i s  de te rmined  by the empi r i ca l  de-  
pendence p roposed  in [15]: 

x~ = A C n ,  (2) 
ra 
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Fig. 2. Dependence of the angle of incidence of a hanging 
shock on the jet axis on the Mach number M a at the nozzle 
section (a) [the dashed line yields the value of the l imiting 
angle of incidence for 7 = 1.4 (plane case)land the depen- 
dence of the angle of reflect ion of a hanging shock on the 
angle of incidence (b) [1,2) resul ts  f rom [3], 3-8) resul ts  
of jet investigations for M a respect ive ly  equal to 4.2, 3.8, 
3.3, 2.27, 1.8, 1.15; 9) cor responds  to the transi t ion modes 
for M a = 2.8 and different values of C]. 

where r a is the radius of the nozzle exit section and 

A ----- 1.38 V~-M a. (3) 

After  the passage  to the regular  ref lect ion which occurs  in the nar row band M a ~ MaD the position 
of the x - shock  is determined by the dependence (2) but with another proport ional i ty  coefficient 

A, = V -M. 'j2 (4) 

The dependences A = f(Ma) (curve 1) and A 1 = q~(Ma) (curve 2) a re  represented in Fig.  3a for C ~ 10 -a. The 
dashes yield values of A in the transi t ion domain for different C. 

The express ion (4) agrees  formal ly  with the resul ts  of an approximate computation of the position of 
the point P2 = Pb on the jet axis by means of the formula  proposed in [5]. 

The diameter  of the Mach disk in dense jets (C ~ 10 -s) depends slightly on M a in the range i -< M a 
-< 2.8 and var ies  sharply in the t ransi t ion zone near  Ma/ (Fig. 3b) where the following dependence can be / 
used to determine its numer ica l  values 

Do/d a = F V~n,  (5) 

where F = F (Ma) ~ 0.5 in the range 1 --< M a -< 2.8. 

The influence of dissipative p roces se s  is superposed on the relat ions and dimensionali t ies presented 
above, which a re  valid for dense jets (C ~ 10 -a in the present  tr ial) ,  as the s t r eam density diminishes for  
C > 10 -s. This is natural ly manifested most  s t rongly in domain 2 of Fig.  3a, where the angles of hanging 
shock incidence a re  close to the limit value. The dissipative p rocesses  apparently resul t  in a change in 
shock intensity [16, 17], which implies a change in the conditions of compress ion  shock reflect ion f rom the 
jet axis ,  An increase  in the angle at the tr iple point between the hanging shock and the jet axis,  and a d im-  
inution in the diameter  of the Mach disk and its r ecess ion  f rom the nozzle section with a subsequent t r ans i -  
tion into an x-shock  as the density diminisbes in the incident shock domain (C > 10 -~) (Fig. 4a) a re  observed 
experimental ly .  The triple configuration was identified with the x - shock  if the diameter  of the third shock 
was less  than the nozzle d iameter .  The experimental  values of the rarefac t ion  pa rame te r  C = C 1 = f(Ma) 
(for 7 = 1.4) for which disturbance of the ideal flow result ing in diminution of the Mach disk occurs ,  a re  
given in Fig.  4b. Presented  there a re  experimental  values of the pa ramete r  C = C l = q~(Ma) (7 = 1.4, 1.667) 
at which a t ransi t ion into an x-shock  occurs .  An investigation of the boundary of the t ransi t ion into an x-  
shock in another gas (7 = 1.667) for  a fixed nozzle half-angle (~0 = 10~ has shown that the conditions of the 
t ransi t ion in the criteria1 fo rm of M a and C depend slightly on the adiabatic index in F ig .4b .  
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Fig.  3. Distance to the closing shock along the jet  
axis and d iame te r  of the Mach disk: a) dependence 
of the coefficients A(1) and Al(2 ) on the Mach num-  
be r  at the nozzle sect ion and the r a re fac t ion  p a r a m -  
e ter  C (3) 2.5.10-3;  4) 1.5.10-3;  5) 1.0.10-3;  6, 7) 
data f rom [1]); b) d imens ionless  d i ame te r  of the 
Mach disk as  a function of M a [1, 2) r e su l t s  of [1] 
for  C < 10-3; 3) C = 1.10-3;  4) 2 �9 10"3]. 

TABLE 2. Dependence of the Propor t ional i ty  Coefficient 
k on M a and C 

Ma=2,8 bia=2,5 

C ] 1,13"10"3 1,48"'0"3[ 1,69"10"3 ]2, 02"10"3 C I 1,1'10"3 
tc 0,117 0,108 0,97 0,82 tr 0,136 

Ma=2,27 

C 2,3.10 -s 1,72.10-~2,3.10 "a 4,16.10- 4,27.10- 5,72.10-~ 
0,18 6 0,195 0,186 0,126 0,065 0,03 

Within the l imits  of exper imenta l  a ccu racy  it has a lso  been shown that no significant change in the 
conditions of t rans i t ion  into an x - shock  in the c r i t e r i a l  f o r m  of M a and C f r o m  the nozzle half-angle  (~0 "~ 10- 
16 ~) is obse rved  (Fig.4b) .  

As the r a r e f ac t ion  p a r a m e t e r  C i nc r ea se s ,  the d i ame te r  of the Mach disk ceases  to be desc r ibed  by 
(5). The r e su l t s  obtained for  m e a s u r e m e n t  of the d i ame te r  of the Mach disk a r e  not extended when the 
p a r a m e t e r s  C, K2D [2] a r e  used, where  K2D is computed by means  of the flow p a r a m e t e r s  behind the cent ra l  
c o m p r e s s i o n  shock.  The extension of the d imens ionless  Mach disk d i ame te r  (more exact ly the quantity (D O 
/da)n -1/2) is more  sa t i s f ac to ry  when the Knudsen number  K1D computed along the mean f ree  path of the gas 
molecules  ahead of the Mach disk and its d iamete r  is used as  the general iz ing p a r a m e t e r .  A diminution in 
the d i ame te r  of the Maeh disk as compared  with the ideal values is obse rved  for  K1D ~ 0.01-0.02. 
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Fig.  4. Resul ts  of investigating var ious  kinds of hanging shock r e -  
f lections f r o m  the jet  axis :  a) change in the nature  of ref lec t ion as 
n i nc reases  for  M a = 3.0 [1) 31.0, 2) 38, 3) 56]; b) domain of ex i s -  
tence of var ious  shock configurations in the neighborhood of the 
in te rsec t ion  between the closing shock and the jet axis: 1) flow in 
the Mach configuration domain cha rac t e r i s t i c  for  a dense gas jet; 
2) t rans i t ion  into an x-shock;  3) domain of x - s h o c k  exis tence [I) 
a i r ,~  o ~ 10~ II) a i r ,~  o ~ 15~ HI) argon,  ~o ~ 10~ 
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As has been remarked  above, a diminution in the density as C increases  resul ts  in gradual removal  
of the central  compress ion  shock f rom the nozzle section and the transi t ion into an x-shock for a fixed 
Mach number M a on the nozzle section.  The position of an x-shock is determined by (2) with the p ropor -  
tionality coefficient A 1 (4), curve 2 in Fig.  3a in this case .  The influence of rarefact ion on the behavior of 
the coefficient A during the t ransi t ion into an x - shock  can be t raced  well in Fig.  3a, where the dependences 
of A on M a a re  given for three values of C [3) 2.5.10-3;  4) 1.5.10-3;  5) 1 �9 10 -3] as a pa rame te r .  The values 
of the limit Mach number M a / a t  which the t ransi t ion into an x-shock  occurs  a re  shifted towards l e s se r  M a 

as the rarefact ion pa rame te r  C inc reases .  The width of the band of Maeh numbers  M a in which the t r ans i -  
tion into an x-shock  occurs  for a fixed value of C depends on Ma, where an increase  in the Mach number M a 
resul ts  in its contract ion (Figs. 3a and 4b). A fur ther  diminution in the s t r eam density in the domain of the 
incident compress ion  shock for C >> C l causes the approach of the x-shock to the nozzle section [5]. 

As the rarefac t ion  increases ,  a change in the slope of the ray  describing the t r a jec to ry  of triple point 
motion also occurs  (see Table 2). 

The resul ts  presented on the influence of ra refac t ion  on the flow in the Mach configuration domain 
permi t  us to say that as the ra refac t ion  increases  the disturbance of the se l f - s imi la r i ty  of the closing 
shock relat ive to ~n in this domain occurs  for fixed Mach numbers .  All the changes in the shock geomet ry  
presented above in the tr iple configuration domain become especial ly graphic in the s imi lar i ty  coordinates 
dan-l/2 (Fig. lb), where C plays the par t  of the p a r a m e t e r .  
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N O T A T I O N  

is the p re s su re ;  
is the tempera ture ;  
is the rat io of specific heats; 
is the shock intensity; 
is the ra t io  between the p r e s s u r e  at a nozzle section and the p re s su re  in the vacuum chamber;  
~s the Mach number;  
Is the Knudsen number;  
is the rarefac t ion  paramete r ;  
are  the proport ional i ty  coefficients in empir ical  formulas  describing the closing shock geo-  
metry;  
~s the nozzle c ros s - sec t iona l  area ;  
is the nozzle diameter ;  
~s the nozzle radius;  
is the haft-angle of a conical nozzle; 
is the geometr ic  closing shock dimension; 
is the distance to the closing shock along the jet axis'; 
m the angle of incidence of the hanging compress ion  shock; 
Is the angle of ref lect ion of the hanging compress ion  shock; 
Ls the distance along the jet axis; 
~s the distance ac ros s  the jet; 
is the proport ional i ty  coefficient; 
~s some constant.  

S u b s c r i p t s  

0 

l 
C 

b 

is the pa r ame te r  in the adiabatically f rozen s t ream;  
is the p a r a m e t e r  in the cr i t ical  nozzle section; 
is the pa r ame te r  at the nozzle exit; 
is the limit value; 
is the pa r ame te r  in the satell i te s t ream;  
is the p a r a m e t e r  in the vacuum chamber .  

1, 
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